
 1

Framework for the Rapid Development of Modeling Environments

Ákos Lédeczi, Miklós Maróti and Péter Völgyesi1
Institute for Software Integrated Systems, Vanderbilt University

Nashville, TN, 37221, USA
akos.ledeczi@vanderbilt.edu

1. INTRODUCTION
Graphical modeling environments for system development are integrated sets of modeling, model

analysis, simulation and code generation tools that aid the design of systems in a particular, well-defined
engineering fie ld. These toolsets capture specifications in the form of domain models, support the design
process by automated systems analysis and simulation and automatically generate, configure or integrate
components of the target applications. Examples for such domain-specific environments are Rational
Rose for object oriented software development, Matlab/Simulink for signal processing and LabView for
instrumentation.

Advantages of such environments are the result of their domain specificity. Domain-specific
modeling methodologies enable the concise representation of essential design views, the formal
expression and automated enforcement of integrity constraints and model composition that is synergistic
with the design process in the domain.

While these benefits of domain-specific development environments are well understood and
documented, their high cost represents a significant roadblock against their wider application.
Consequently, domain specific toolsets are available commercially only for domains with large markets,
where the significant initial investment is offset by high volume. For the rest of the application areas, one
solution is to create configurable tools that readily provide the generic functionality of graphical
development environments (creating and managing design projects, editing and combining diagrams,
translating information into output formats), and let them easily be tailored to use the concepts of a given
domain2. Such tools can approach, albeit never fully reach, the features of an environment directly
developed for a given domain. Their key advantage is that effort needed for customizing them for the
domain is orders of magnitude less than a developing a custom-made toolset.

Furthermore, these tools ease the development and evaluation of new or modified modeling
methodologies. As we will show, the development of a fully functional modeling environment using a
configurable toolset can take from hours to days depending on the complexity of the given modeling
methodology. On the other hand, the development of a custom environment from scratch is measured in
man-years.

The Generic Modeling Environment (GME) (Ledeczi et al., 2001 November) developed at the
Institute for Software Integrated Systems at Vanderbilt University (freely available at
http://www.isis.vanderbilt.edu/Projects/gme) is one of the more prominent configurable modeling
environments. Its configuration is accomplished through metamodels specifying the modeling paradigm
(modeling language, modeling methodology) of the application domain. The modeling paradigm contains
all the syntactic, semantic, and presentation information regarding the domain – which concepts will be
used to construct models, what relationships may exist among those concepts, how the concepts may be
organized and viewed by the modeler, and rules governing the construction of models. The modeling
paradigm defines the family of models that can be created using the resultant modeling environment.

1 Embedded Information Technology Research Group, Hungarian Academy of Sciences, Budapest,
Hungary
2 Some refer to these tools as metaCASE environments. We prefer not to use this phrase because it
restricts the applicability of the approach to software engineering. We believe it to be equally applicable
to system engineering, information modeling and other domains.

 2

Metamodeling is the primary method for specializing a GME instance. The metamodeling language is
based on the UML class diagram notation. Metamodels also contain OCL constraints specifying the static
semantics of the modeling language. These constraints are automatically enforced in the target GME
instance. Additional methods for customizing GME include decorators, interpreters, and add-ons.
Decorators are simple software components that can be attached to a GME instance. They are used for
domain-specific visualization of the models. Interpreters and add-ons are external software components
that interface with GME and provide additional domain-specific functionality including, but not limited to
code generation.

The rest of the paper is organized as follows. In the next several sections the different methods for
providing native support for different modeling methodologies are described in detail. Then examples are
presented that illustrate these techniques. Finally, we compare two other well-known configurable
modeling environments to our approach and present our conclusions.

2. METAMODELING
The metamodeling language is not used for defining domain models, but rather for defining domain-

modeling languages. Thus, “sentences” in the meta-language define specific domain languages, while
“sentences” of the domain language define specific systems. GME follows the standard four-layer
modeling architecture.

The GME metamodeling methodology is implemented with GME itself. The meta-modeling language
is just another domain language. The metaspecifications that configure the GME are generated by the
metamodeling interpreter from the metamodels. The metamodeling language itself is generated by the
same interpreter when translating the meta-metamodels.

At the metamodeling level GME provides generic modeling primitives that assist an environment
designer in the specification of new modeling environments. These concepts are directly supported by the
framework as stereotypes of the specific classes. Elementary types that do not contain other objects are
defined as atoms, while models are composite classes. Associations between these classes are modeled
using the connection primitive that is visualized by the modeling tool as a line between the objects.
Connections can only express relationships between objects at the same hierarchy level or one level
deeper with the help of ports on composite models. References help to overcome this limitation by
enabling the user to associate objects in different model hierarchies. A reference always refers to exactly
one object, which can be of any kind except connection; this establishes a relationship between the model
that contains the reference and the referred object. Connections and references model relationships
between at most two objects. Sets can be used to specify the relationship among a group of objects.
Atoms, models, connections, references and sets are the first class objects (FCO) of the modeling
framework.

The language designer can assign different attributes to first class objects. Attributes are values of
predefined simple types, such as integer, string, boolean and enumeration. The meta-attribute defines the
name, the value type and the default value of the attribute. The attribute value of an instantiated object is
user changeable at the modeling level.

The framework provides various techniques for managing the complexity of large-scale models; the
most notable concept is the introduction of aspects enabling the domain users to focus on selected parts of
a design. At the metamodeling level a set of aspects are assigned to every composite type and the
visibility of each contained class can be defined for a given aspect. This powerful construct assisting the
modeler in separating the concerns of multi-perspectives, is similar to views in the world of rational
databases.

The modeling concepts above can be used only if the environment designer precisely defined them in
the metamodel of the paradigm. In our experience, it is often necessary to associate information chunks
without real semantic meaning or strict syntax to objects. This includes, for example, the specification of
visualization information, such as color, style and icon for an object. Therefore we have added an
extensible storage to every FCO, called the registry. The registry is a tree data structure containing the

 3

auxiliary data in the nodes of the tree. The shape and node names of the tree are not fixed in order to
provide extensibility for external tools.

The metamodeling environment provides a powerful set of inheritance operators to describe
specialization and to support metamodel composition. The common inheritance operator implements the
semantics of the standard UML specialization, thus the specialized child type inherits all of the parent’s
attributes and can participate in any association the parent can participate in. Two additional operators are
available to provide finer-grained control over the inheritance relation. These were specifically designed
to support metamodel composition. Implementation inheritance propagates all of the parent’s attributes,
but only the containment association – where the parent functions as the container – to the child type. No
other associations inherited in this case. Interface inheritance allows no attribute inheritance, but does
allow full association inheritance, with one exception: containment relations where the parent functions as
the container are not inherited. Note that the union of the two special inheritance operators gives the
common inheritance, and their intersection is null.

Just as the reusability of domain models from application to application is essential, the reusability of
meta-models from domain to domain is also an important consideration. In GME a library of meta-models
of important sub-domains is made available to the meta-modeler, who then can pick and choose from
them, extend and compose them together to specify the domain language. The extension and composition
mechanisms must not modify the original meta-models for two reasons. First, changes in the meta-model
libraries, reflecting a better understanding of the given domain, for example, should propagate to the
meta-models that utilize them. Second, by precisely specifying the extension and composition rules, using
inheritance and equivalence operators, for instance, models specified in the original domain language can
be automatically translated to comply with the new, extended and composed, modeling language. This is
a simple and elegant solution to the well-known model migration problem. For more detail on metamodel
composition please see (Ledeczi et al., 2001 September).

3. TYPES AND INSTANCES
Model reuse and tools for information maintenance between similar models is a natural requirement

in large-scale models or where model composition is heavily used. The provided solutions in GME –
types and instances – resemble those of object-oriented programming languages. The only significant
difference is that in GME, model types are similar in appearance to model instances; they too are
graphical, have attributes and contain parts.

By default, a model created from scratch – based on a meta type – is a type. A subtype or an instance
of a model can be created with a simple operation, and both will depend on the type they are created from.
There is one significant rule that differentiates subtypes from instances. New parts are allowed in a
subtype, but not in an instance. Otherwise, contained children can be renamed, set membership can be
changed and references can be redirected in both subtypes and instances. However, objects in the
containment hierarchy cannot be removed in either subtypes or instances.

The advantage of using types is clear: any modification in a type model propagates down the
inheritance hierarchy. For example, if a part is deleted in a type, the same part will be automatically
removed in all of its instances and subtypes – even in instances of the subtypes – all the way down the
inheritance tree.

Types can contain other types as well as instances as parts. The mixture of aggregation and type
inheritance introduces another kind of relationship between objects. This is best illustrated through an
example. In Figure 1, there are two root type models: the Engine and the Car. The car contains an
instance of an engine, V6, and an ABS type model. V6 is an instance of the Engine; this relationship is
indicated by the dash line. Aggregation is indicated by solid lines.

When a subtype of the Car is created, e.g. Cool Car above, we indirectly create another instance of
the Engine (V6) and a subtype of the ABS type. This is the expected behavior as a subtype without any
modification should look exactly like its base type. Notice the arrow that points from V6 in Cool Car to
V6 in Car. Both of these are instances, but there is dependency between the two objects. If we modify V6
in Car, V6 in Cool Car should also be modified automatically for the same reason: if we do not modify

 4

Cool Car it should always look like Car itself. The same logic applies if we create an instance of Cool Car
– My Car in Figure 1. It introduces a dependency between V6 in My Car and V6 in Cool Car. As the
figure shows, this forms a dependency chain from V6 in My Car through V6 in Cool car and V6 in Car all
the way to the Engine type model.

Figure 1 Model dependency chains

An interesting situation arises if we modify V6 in Cool Car by changing an attribute. The question is

whether an attribute change in V6 in Car should propagate down to V6 in Cool Car and below. Since the
attribute has been overridden the dependency chain is broken up with respect to that attribute. However, if
the same attribute is changed in V6 in Cool Car that should propagate down to V6 in My Car unless it has
already been overridden there. Figure 2 shows the same set of models, but only from the pure type
inheritance perspective.

Figure 2 Type inheritance hierarchy

 5

The real strength of types and instances can be exploited with the use of model libraries. Based on
predefined and verified models residing in these libraries the modeler is able to create new instances in
his or her project without loosing the connection to the prototype model, thus further enhancements and
corrections in the original model can be easily propagated to all of its subtypes and instances
automatically.

The type and instance feature of GME is sometimes confused with the inheritance relation in the
metamodeling environment. While the meta-inheritance implements the semantic of the UML
specialization – and it is handled by the metainterpreter, types and instances are supported by the
modeling engine independently of the metamodel, and its primary goal is to support model reuse.

4. CONSTRAINT MANAGEMENT
One can consider the UML class diagram-based metamodel as syntax specifications. It determines

what concepts are used in the modeling language and specifies relations and attributes. It does not say
much about what constitutes a correct model. We use the Object Constraint Language (OCL) for the
specification of the static semantics of the modeling language. Constraints are attached to the metamodels
specifying well-formedness rules.

In addition to the OCL expression, a GME constraint has a priority attached to it specifying the action
the built-in constraint manager should take upon its violation. The highest priority results in an error
message and the abortion of the current transaction. Lower priority violations only cause warning
messages.

Constraints can be attached to editing events specifying when they must be checked. For example, the
“on connect” event should be specified for a constraint that restricts the kind or number of connections a
given model can be attached to. Furthermore, all constraints can be checked on-demand at any time.

Certain pieces of information captured in the metamodel cannot be compiled directly into the
paradigm configuration because of the limitations of that format. In such cases, such as the multiplicity
information of containment, membership and connection cardinality definitions, the meta-interpreter
automatically generates OCL constraints.

Complex and reusable constraints can be defined in constraint functions that can be called from
constraints or other functions. They even support recursion. Function parameters enable the constraint
developer to formalize reoccurring definitions in a generic form.

One of the most powerful facilities of the constraint system is the browser that provides an interactive
window to the constraint database. The browser displays the definition, state and other attributes of each
available constraint. Selected constraints can be evaluated on demand or can be disabled temporarily by
the user. In addition to the constraints defined in the meta-model the model builder is able to add and
remove custom constraints at the modeling level.

The constraint debugger assists the modeler in discovering erroneous constraint definitions. The stack
of evaluated expressions along with the current values of all variables are displayed in the debugger. The
evaluation tracking facility can be turned off when the designer is confident in the correctness of the
constraint definitions.

5. VISUALIZATION
The modeling framework provides different kinds of graphical interfaces to the model database. The

primary display area represents models as separate windows showing contained objects as icons and lines.
The physical position of these objects can be arranged arbitrary and independently in each aspect of the
model. The connection paths are controlled by a powerful real-time autorouter. The object positions in
different aspects can be selectively synchronized that helps cleaning up large models.

The model browser uses a different visualization approach, displaying the model hierarchy as a tree
where non-leaf (composite) nodes can be collapsed or expanded on demand. While this method provides
less control and information on a specific node it reveals the whole model hierarchy.

 6

The third interface displays model information in tabular format, similar to a spreadsheet, which
supports batch editing and consistency checking nicely.

Finally, it is the main edit ing window where most of the model creation and modification takes place.
Model visualization can be customized to fit the target modeling methodology. All object drawing and
mouse handling operations are assigned to a software component, called a decorator, outside of the
regular user interface. Whenever these operations need to be executed the GME editor calls the decorator
registered for the current modeling language through a predefined interface. GME comes with a default
decorator and some samples. Any modeling paradigm can have a custom decorator implementing
domain-specific visualization. Decorators have full access to the model database to be able to provide
context based visualization for the decorated objects. The graphical framework may send update requests
to a specific decorator with a given frequency, if animated visualization is requested.

6. EXTENSIBILITY
GME was designed with extensibility as one of the most important goals. The tool has a modular

component architecture shown in Figure 3. At the bottom, different storage formats, ranging from
relational databases through a fast proprietary binary file format to XML, are supported. Two key
components of the GME are GMeta and GModel. The GMeta component defines the modeling paradigm,
while GModel implements the GME modeling concepts for the given paradigm. GMeta configures itself
by reading the meta specifications (generated from the metamodels), while GModel uses the services of
GMeta for self-configuration. The GModel component exposes its services through a set of public
interfaces as well. The architecture is based on Microsoft COM technology.

GME GUI
Constraint
Manager

Interpreter(s)Add-On(s)

Browser

… DB #nDB #1 XML …

GModel GMeta

Generic Modeling Environment
Core

Storage Options

Decorator

Figure 3 GME Architecture

The user interacts with the components at the top of the architecture: the GME User Interface, the

Model Browser, the Constraint Manager, Interpreters and Add-ons. Add-ons are event-driven interpreters.
The GModel component exposes a set of events, such as “Object Deleted” or “Attribute Changed,” etc.
External components can register to receive some or all of these events. They are automatically invoked
by GModel when the events occur. Add-ons are extremely useful for extending the capabilities of the
GME User Interface, for example. When a particular domain calls for some special operations, these can
be supported by add-ons without modifying any GME components.

Since the event dispatching mechanism is a vital part of the architecture, its performance has a
significant impact on the usability of the overall framework. All external components own a so called
territory that keeps track of all objects that the component may be interested in. This repository is

 7

automatically maintained based on the object references that GModel ever handled over to the
component. A specific event will be propagated to the component only if the affected object is in the
component’s territory. This technique reduces the number of redundant event messages dramatically.

The performance and reliability of the overall system is further improved with the help of
transactions. Model operations – even read-only actions - on the GModel level must be encapsulated in
transactions. Components are receiving events when a transaction begins and finishes, thus they are able
to aggregate multiple changes and react to those changes at the end of the whole transaction. In case of a
read-only transaction they may discard all notifications.

The framework keeps track of all registered external components and integrates them into the user
interface. Add-ons are automatically started when a project in a supported paradigm is opened.
Interpreters are integrated into the menus and toolbars of the user interface after successful registration.
Information on the registered components is retained across invocations of the tool.

COM technology enables the seamless integration of additional components. Moreover, components
can be implemented using any programming language that supports COM, such as C++, Visual Basic,
Python, Java or C#.

The different standard technologies applied throughout the environment, such as UML, OCL, XML,
and COM, ensure maximum flexibility. The modeling tool also provides a C++ programming framework
along with a code wizard to help developing external components without understanding COM or
working on infrastructural code. The framework, called the Builder Object Framework is a hierarchy of
classes that represents and mirrors the model database in the form of C++ objects. It enables the
developer to focus on the domain specific part of the program immediately, thus implementing simple but
useful components can take as little time as a few hours.

7. EXAMPLE
As a first example, consider the metamodeling language itself. Figure 4 shows the metamodel of a

simple hierarchical finite state machine modeling paradigm (HFSM) in GME configured for
metamodeling. In the lower right corner of the GME window you can see the currently active modeling
language; in this case it is MetaGME. The window in the lower left corner is the partbrowser. It contains
the kind of parts that can be inserted in the current aspect of the currently open model. The tabs in the
bottom show all available aspects. For the metamodeling language these are: ClassDiagram,
Visualization, Constraints and Attributes. Aspects help manage model complexity by separating
orthogonal concerns. Aspects are captured in the Visualization aspect of the metamodel (not shown).

The window in the lower right corner shows the attributes, preferences and properties of the
selected object or objects. The window on the top right is the model browser. It shows the hierarchy of the
whole project. Notice that in this case it shows parts GuardCondition, Main or UniqueName, that are not
shown in the main window. The reason is that those parts are shown in different aspects of the Main
model. GuardCondition is an attribute of Transition captured in the Attributes aspect, Main is the single
aspect in our HFSM modeling language modeled in the Visualization aspect, while UniqueName is a
constraint specified in the Constraint aspect. This constraint specifies that no two substates of a state can
have the same name:

self.parts(State)->forAll(x, y | x.name = y.name implies x = y)

For this particular constraint the Close Model event seems to be the best candidate for
enforcement. Whenever the parent model is closed the constraint will be checked.

The metamodeling environment has its own decorator. It is capable of visualizing the UML class
diagram notation. It displays the names, stereotypes and attributes of all classes. It shrinks or expands the
box to fit the displayed text. This particular decorator is about 1500 lines of C++ code most of which is
the baseline code shared among all decorators.

 8

Figure 4 HFSM metamodel

Figure 5 Example HFSM model

 9

The metamodeling environment has a good example for an add-on. OCL syntax checking is a
very specific functionality that is not part of the baseline GME program. But it is a very important
functionality for metamodeling; the user does not want to wait for catching syntax error in her constraints
until a constraint is checked in the target environment. Therefore, we provide an add-on to the
metamodeling environment that checks the OCL syntax of the constraint that is currently being edited.
The OCL expression is a textual attribute of the constraint object. The OCL syntax checker add-on is
registered to catch attribute change events. Whenever it is fired it parses the OCL expression and provides
immediate feedback to the user.

As most meaningful modeling paradigms, the metamodeling environment has its own interpreter.
It parses all the class diagrams (in the HFSM case there is only a single one) and generates an XML
representation of the modeling language. GME can read this file and configure itself to support the new
language. Figure 5 shows an example model captured in the resulting HFSM modeling environment.

The name of the modeling language is shown in the lower right corner again. Notice that the only
part shown in the part browser is State and the only aspect is Main. The attribute window shows the
GuardCondition attribute of one of the transitions. Our simple HFSM environment uses the standard,
built-in decorator that is able to display boxes, icons, names etc. Notice that the state Second has two
substates with the same name “A”. When trying to close the model or explicitly requesting constraint
checking, the violation is caught by the constraint manager. The error message displayed is shown in
Figure 6.

Figure 6 Constraint violation

8. PRACTICAL APPLICATIONS
Three practical applications of GME are presented below:

MILAN, the Model-based Integrated simuLAtioN framework, is a GME-based extensible

environment that facilitates rapid evaluation of different performance metrics, such as power, latency and
throughput, at multiple levels of granularity, of a large class of embedded systems by seamlessly
integrating different widely-used simulators into a unified environment (Ledeczi, Davis, Neema and
Agrawal, 2003). The MILAN framework is aimed at the design of embedded high-performance
computing platforms, of System-on-Chip (SoC) architectures for embedded systems, and for the
hardware/software co-design of heterogeneous systems.

MILAN provides an integrated environment where existing development and analysis tools, primarily
simulators, can work seamlessly together. MILAN defines an integrated data model that captures the
shared semantics of all the tools integrated and a bidirectional semantic translator for each of them. This
is an elegant solution to tool integration that also avoids the scalability problem associated with pair wise

 10

translation, i.e. the integration of a new tool requires only a single new translator (and possible
modifications to existing ones) and not N, i.e. the number of integrated tools. This is a key advantage
since one of the design goals of MILAN is to provide an open environment so that users can integrate
additional tools on their own.

The complex modeling language allows for the specification of the desired application functionality
in the form of an extended dataflow representation with strong datatyping and parametric modeling,
provides the means to specify the available hardware resources and enables the user to define mapping
information between the two. Finally, application requirements can also be captured by explicit
constraints in the models. Instead of specifying a point solution, however, MILAN enables capturing the
whole design-space of the application. At any point in the hierarchical dataflow, explicit design or
implementation alternatives can be specified. For example, different algorithm choices optimized for
speed, memory requirements or power consumption can be captured this way or optimized
implementations can be provided for different hardware targets. Similarly, multiple hardware resource
options can also be supplied. Finally, hardware/software allocation need not be fully specified. These
techniques make it possible to describe a large – potentially exponential – set of solutions forming the
design space of the application. Our symbolic design-space exploration and pruning technology rapidly
narrows it down to the subset that satisfies all requirements of the system that are captured as constraints
(Neema, 2001).

Tools currently integrated into the MILAN framework include such functional simulators as Matlab,
SystemC and ActiveHDL (a VHDL simulator) and a high-level performance estimator, HiperE (Mohatny
et al., 2002). These tools are not aware which parts of the system are to be implemented in hardware and
which parts in software. This makes MILAN a true system-level hardware/software codesign
environment. Of course, lower-level integrated tools, such as such cycle-accurate simulators as
SimpleScalar, are already tied to a specific hardware technology. Note that the different tools only
communicate through the integrated system models. This eliminates the need for each tool to be
interfaced directly to all others.

SSPF. A predecessor of GME was used to create the Saturn Site Production Flow (SSPF) system that

monitors the car manufacturing process at GM’s Saturn Corporation providing key production measures
to managers in real-time (Long, Misra and Sztipanovits, 1998). The system models describe the
manufacturing processes down to the machine level, the buffers between the processes (e.g. conveyor
belts), the instrumentation (i.e. PLCs), and how the information is to be presented to the user. The
interpreters generate various configuration files and SQL database schema to configure the SSPF client-
server application. The program gathers the production information, stores it in a real-time database and
makes it available to any user in the plant.

GRATIS, a graphical development environment for TinyOS, provides an intuitive visual interface

and automatic code generation capability for the development of TinyOS-based sensor network
applications (Volgyesi and Ledeczi 2002). With the original TinyOS tools (Hill 2000) working with
textual configuration files while developing non-trivial applications could quickly become an error-prone
and tedious process. Function-like entities have two or more names in the final application; this
characteristic is inherent in the flexible design enabling the creation of countless different applications
without touching the implementation of the individual components. However, as a side effect, it has
notable impact on the maintainability of the applications. GRATIS replaces the textual representation of
the interface and configuration specifications. Even with a simple application, a more expressive
representation of components and interconnections between them can help design better applications and
increase their readability. With more sophisticated components and especially with hierarchical
composition this becomes an absolute requirement. There are cases, where components might impose
additional complex restrictions on their use – like mutual exclusion or maximum fan-out – in addition to
the normal rules of composition in TinyOS. These additional requirements can be easily captured by the
constraint language provided by the GME modeling framework.

 11

Since all practical applications use system components from the TinyOS distribution, GRATIS also
provides a mapping from the existing large code base to the graphical environment. Therefore, the
interpreter not only generates text files from graphical models, but it is also capable of parsing existing
files and building the corresponding GME models from them. The main use of this parsing feature is to
automatically generate the graphical equivalent of the TinyOS system components and to provide them as
a library to the user in the GRATIS environment. An indisputable benefit of the parsing and model
building process is an exhaustive testing, since the parser – with the help of the predefined constraints in
the metamodel – builds and validates all components and applications found in the source tree. Since
scripting languages are generally superior to compiled languages in the field of text processing, we have
implemented GRATIS using GME and the Python language exclusively, which also demonstrates an
extension alternative to our C++ interpreter framework.

Other experimental modeling languages have also been implemented to describe not only the type
requirements, but temporal dependencies and the implementation details also. These languages comprise
our further work to understand compatibility and composability issues better in the field of embedded
systems. GME proves to be an efficient tool and approach to build such environments.

9. COMPARISON TO OTHER TOOLS
In terms of supported features, maturity, and the number of real world applications, three configurable

environments stand out: Dome by Honeywell Laboratories (Honeywell, 2000), MetaEdit+ by MetaCASE
Consulting of Finnland (MetaCase, 2000) and our own Generic Modeling Environment (GME) (Institute
for Software Integrated Systems, 2002). The four key areas that enable true support for widely different
modeling methodologies are metamodeling, constraint management, visualization and extensibility.

Metamodeling: Meta-modeling may be regarded as just another type of modeling, therefore, Dome
and GME use the tools themselves to implement this functionality. MetaEdit+ has a more conservative
approach; a series of dialog boxes are used to specify the meta-model in a non-graphical way. Meta-
models typically evolve while being used, and modifications in the meta-model often break the validity of
models. These concerns are just partially handled in Dome and MetaEdit+. GME is the only tool that
demonstrates a strict discipline: meta-models are versioned, and new versions of meta-models do not
affect existing models until they are explicitly upgraded to the new version. Such an upgrade implies
extensive validity checking. This is somewhat cumbersome, but essential for warranting the correctness
of models, especially if they are beyond the usual demo application size.

GME is the only environment that provides support for metamodel composition and metamodel
libraries.

Constraint management: Dome and MetaEdit+ have some built-in support for certain types of
frequently used constraints. GME, on the other hand, has a full featured constraint manager supporting
OCL, a standard constraint language. Constraints can also be associated with editing events and priorities,
making constraint management interactive and flexible.

Visualization: While MetaEdit+ provides an impressive built-in symbol editor, GME and Dome
provides only the choice of simple built-in symbols and bitmap files provided by the user, and rely on
user-defined drawing routines for more complex visualization. While this user -defined visualization can
be very powerful and flexible, their implementation obviously requires some traditional programming
skills from the user.

Extensibility: the interface to Dome models is primarily through its Alter language, a Scheme variant.
MetaEdit+ only supports a proprietary scripting language to access the models. On the other hand, the
component based architecture of GME makes it easily extensible. Meta and model information are all
available through public COM interfaces. Events are also exposed through COM. When any component
makes a change to the models, all other interested components are notified. The toolset can be extended
using any programming language that supports COM (e.g. C++, VB, Python). Furthermore, GME
supports XML export/import for both model and meta information.

 12

10. CONCLUSIONS
We presented GME, a framework that enables the rapid development of modeling environments. Its

powerful metamodeling capabilities make it possible to create a full-featured modeling environment in
hours. For example, an experienced user could easily create the simple HFSM environment presented
above as an example in well under an hour. Hence, GME supports the rapid design of modeling languages
enabling immediate hands-on experience with the language. It supports an iterative design method of
modeling methodologies; users can quickly evolve their language design by iteratively modifying the
corresponding metamodel. When the modeling methodology becomes satisfactory then the effort to create
decorators, add-ons and interpreters are much better justified. Note, however, that typical domain-specific
components for GME are relatively small, hence the effort to create the additional software modules is
not prohibitive even for small projects. For example, an HFSM simulator that animates the automaton
within the GME user interface was written by a graduate student in a couple of weeks.

The HFSM example presented here is very simplistic for clarity. In our experience, GME scales very
well. The modeling language of MILAN, for example, has hundreds of modeling concepts. Both MILAN
and GRATIS support large model databases. Other large -scale, real-world applications of the technology
are presented in (Ledeczi et al., 2001 November).

The research in configurable modeling environments, metamodeling methodologies and model
visualization continues at our institute. GME is just a reflection of the current state-of-the-art of our
research. New versions of the software are regularly released multiple times a year. Ongoing work
includes research on generative modeling, automatic interpreter generation using graph transformations
(Agrawal and Karsai, 2003) and integrating GME into the popular Eclipse framework (Eclipse.org
Consortium, 2001).

11. ACKNOWLEDGEMENTS
The authors would like to express their gratitude to DARPA and the Boeing Company for the

generous sponsorship of the research describe here.

References

Ledeczi, A. et al. (2001 November). Composing Domain-Specific Design Environments. IEEE
Computer, 34(11), pp. 44-51

.
Honeywell (2000). Dome Official Web Site. [Online].

Available: http://www.htc.honeywell.com/dome/.

MetaCase Consulting (2000). MetaEdit+ Official Web Site. [Online].

Available: http://www.metacase.com.

Ledeczi, A., Davis, J., Neema, S., Agrawal, A. (2003). Modeling Methodology for Integrated

Simulation of Embedded Systems. ACM Transactions on Modeling and Computer Simulation, 13(1), 82-
103.

Ledeczi, A. at al. (2001 September). On Metamodel Composition. IEEE Conference on Control

Applications 2001, Mexico City, Mexico, CD-ROM.

Institute for Software Integrated Systems (2002). GME Official Web Site. [Online].

Available: http://www.isis.vanderbilt.edu/Projects/gme.

Eclipse.org Consortium (2001). Eclipse Official Web Site. [Online].

Available: http://eclipse.org/.

 13

Agrawal, A. & Karsai, G. (2003). A UML-based Graph Transformation Approach for

Implementing Domain-Specific Model Transformations. International Journal on Software and Systems
Modeling, (Submitted).

Long, E., Misra, A, Sztipanovits, J. (1998 August). Increasing Productivity at Saturn. IEEE

Computer, 31(8), pp. 35-43

Hill, J. at al. (2000 November). System Architecture Directions for Networked Sensors.
Proceedings of Ninth International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS) 2000, Cambridge, MA, USA.

Volgyesi, P. & Ledeczi, A. (2002 September). Component-Based Development of Networked

Embedded Applications. 28th Euromicro Conference, Component-Based Software Engineering Track,
Dortmund, Germany.

Mohatny, S., et al. (2002 June). HiPerE: A Framework for Rapid System Level Power and

Performance Estimation of Embedded Applications on SoC/SoP Architectures. Design, Automation, and
Test in Europe.

Neema, S. (2001). System Level Synthesis of Adaptive Computing Systems. Ph. D. Dissertation,
Vanderbilt University, Department of Electrical and Computer Engineering.

